
SnakeToonz : A Semi-Automatic Approach to Creating Cel Animation
from Video

Aseem Agarwala1

Starlab NV
http://www.agarwala.org

Abstract

SnakeToonz is an interactive system that allows children and others
untrained in cel animation to create two-dimensional cartoons from
video streams and images. The ability to create cartoons has tradi-
tionally been limited to professional animation houses and trained
artists. SnakeToonz aims to give anyone with a video camera and
a computer the ability to create compelling cel animation. This is
done by combining constraints of the cartooning medium with sim-
ple user input and analysis of that input.

A cartoon is created in a dialogue with the system. After record-
ing video material the user sketches contours directly onto the first
frame of video. These sketches initialize a set of spline-based active
contours which are relaxed to best fit the image and other aesthetic
constraints. Small gaps are closed, and the user can choose colors
for the cartoon. The system then uses motion estimation techniques
to track these contours through the image sequence. The user re-
mains in the process to edit the cartoon as it progresses.

CR Categories:
I.3.8 [Computer Graphics]: Applications— [I.4.9]: Image Pro-

cessing and Computer Vision—Applications

1 Introduction

Cel animation is a difficult and time-consuming medium to work in.
Kids love drawing cartoon-like sketches, but have never been able
to draw an entire animation. SnakeToonz allows children and other
untrained users to create animated cartoons using a combination of
the child’s own video material and sketching.

We use active contours, a computer vision technique informally
known as snakes [Kass et al. 1987], as the basic primitives in our
cartoon animations. A snake is a two-dimensional contour which
is relaxed to a minimal energy configuration; the energy function
is typically based on the greyscale values of an image so that the
curve conforms to a certain object or feature in the image. Snakes
are an active area of research in computer vision.

Two-dimensional cartoons are currently made in two ways.
Television and feature-film cartoons are hand-drawn by animation
houses with large teams of highly-trained artists at a very high

1Currently at Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle WA. Email: aseem@agarwala.org

cost [White 1988]. Web animation, usually streamed in the Flash
format, is a quickly growing alternative. These cartoons are cre-
ated by graphic designers using complicated design software. It
has been estimated that it takes between 10 and 30 hours to create a
single minute of Flash animation, notwithstanding the training and
experience involved [Paul 2000].

Creating a compelling cartoon normally requires the ability to
draw well, the ability to create and plan attractive motion trajecto-
ries, and lots of time. The medium is far out of the reach of the
average person because of the high effort required. A recent and
exciting focus in computer graphics research has been the attempt
to give children and untrained users the ability to express their cre-
ativity in new mediums and at quality levels previously unattain-
able [Igarashi et al. 1999; Anderson et al. 2000]. These systems
combine simple human input with computational analysis to cre-
ate media that is better than either the computer or untrained user
could have achieved alone. SnakeToonz brings this approach to the
medium of 2D cartoons. By combining human input with video
analysis and motion estimation, SnakeToonz creates cartoons more
quickly and easily than traditional methods. The downside of such
a semi-automatic technique, of course, is that the flexibility and
quality levels of a fully manual approach are partially sacrificed.

Our approach is inspired by common tracing techniques. Chil-
dren often create much better drawings than they could create alone
by laying semi-transparent paper over an image and tracing it.
Even trained animators occasionally use rotoscoping [Maltin 1980],
where cartoons are traced from film projected onto their desk, to
handle especially complicated sequences; Disney’s Snow White
used this technique extensively [Thomas 1976]. However, cartoon
rotoscoping still requires the animator to hand-draw each frame of
the animation, a process too laborious for children. SnakeToonz
combines this process of creating cartoons with video analysis. The
result is a method of creating a cartoon that requires little expertise,
but still allows plenty of creative freedom for the user.

Video motion estimation is far from a perfect art, however, and
works best when tuned to a specific application. Thus, our goal
scenario is to allow children to create their own cartoons using their
own toys as actors and actresses. The child can act out scenes with
their toys as puppets in front of a video camera, and then use Snake-
Toonz to draw cartoons from this video material. Creating cartoons
becomes a fun learning activity for children.

SnakeToonz creates animations that are entirely vectorial. The
result is animation that can be streamed on the internet over low-
bandwidth in a vector format such as Flash. It can also be rendered
at any resolution without faceting, as parametric curves are used as
the basic primitives.

The process of creating a cartoon is modeled as a dialogue be-
tween child and computer. The child first creates a cartoon of the
first frame of video by drawing curves directly on the image. The
system responds by modifying the drawn curves to best fit the edges
in the image as well as other aesthetic constraints. The system also
snaps together small gaps between drawn curves. The child can
advance to the next frames as the system attempts to automatically
propagate the cartoon using video motion estimation. He or she can

then edit the system’s suggestion, if necessary, and is free to add or
delete curves as occlusions occur or new perspectives of objects
appear.

This paper is organized as follows. After discussing previous
work, the process of creating a single frame of cartoon is presented.
We then show how the single-frame cartoon is propagated into a
multiple-frame animation. Finally, we present results and conclu-
sions.

2 Previous Work

We have found little published work dealing specifically with the
application of active contours to animation; a notable exception is
the work of Hoch and Litwinowicz [1996], where snakes were used
to track the facial features of an actor for driving animated charac-
ters. The main difference from our system is that the active contours
were not used directly as primitives for animation.

We draw inspiration from several systems that allow chil-
dren to play in otherwise complicated and advanced mediums.
Teddy [Igarashi et al. 1999] allows children to create 3D models
from sketching, and the work of Anderson et al. [2000] gives chil-
dren tangible access to modeling in 3D using blocks and clay.

We are also heavily indebted to a large body of research from the
computer vision community in active contours and tracking. Snakes
were first developed by Kass et al. [1987]. An in-depth treatment of
recent active contour research can be found in a book by Blake and
Isard [1998]. Spline-based snakes were first explored by Menet et
al. [1990]. We use a combination of these techniques, as none were
specifically suited to our requirements.

Finally, we are also inspired by the large and recent effort in non-
photorealistic techniques for computer graphics. Much of this effort
has focused on the rendering of 3D models, including cartoon-like
rendering [Kowalski et al. 1999]. However, these techniques are
less accessible to children and untrained users, as 3D modeling and
animation is a complicated task. On the other hand are systems
that work with images and video. Some of these systems conduct
automatic transformations [Hertzmann 1998; Litwinowicz 1997];
we are more interested in combining computation with the spark of
human creativity, such as in interactive systems for creating illus-
trations from images [Salisbury et al. 1994; Salisbury et al. 1997;
Ostromoukhov 1999]. These efforts are the most similar to ours
in inspiration, though they deal with very different styles, and only
with single images.

3 Drawing One Cartoon Frame

The process of creating an animation starts with drawing a cartoon
from the first frame of video. In our simple model, a cartoon image
consists of solid regions of color demarcated by curves. We assume
that the salient curves in a cartoon representation of a photographic
image will lie on strong edge features in the image. This assumption
may not always hold, but in our applications involving videos of
toys, it has proven to be the case.

To create a cartoon the child draws contours directly onto the
photographic image. In a sense, the user is identifying features in
the image that he or she wishes to include in the animation. The
child has complete control over these decisions, which is useful in
creating cartoons of toys; the child does not need to include the
hand holding the toy, so that the cartoon characters will seem to
move on their own.

The problem is that the child will not generally draw a curve that
perfectly follows curves in the image; nor will he or she exactly
adjoin endpoints so as to clearly define closed regions for coloring.
The former is especially a problem for tracking the contours over
time; contours that do not lie directly on high-frequency regions

of image data are difficult to track. To this end, we must mod-
ify the child’s sketching to best fit the edges in the data. We must
also exactly align adjacent endpoints of contours so as to close gaps
and form closed regions, a technique we call snapping. We discuss
these two techniques in the following two sections. Of course, in-
teractive controls must exist to allow the user to manually correct
any changes the system might make. These tools are discussed in
Section 3.4. Finally, once the contours of a cartoon image are well
defined, the user can enter a coloring mode and set colors for the
closed regions. This is discussed in Section 3.3.

3.1 Snakes

Traditional snakes are represented as many points connected by
line segments. Such contours, however, are not visually attractive
as they exhibit faceting and do not scale well over different reso-
lutions. We use connected piecewise cubic Bézier splines as the
representation of the snake contours. In addition to their visual ad-
vantages, spline-based snakes have another benefit. Their represen-
tation is more compact, which means the optimization space has
lower dimensionality. Another common approach to user-guided
contour extraction uses a live-wire boundary, such as Intelligent
Scissors [Mortensen and Barrett 1995]. However, this technique
attempts to be pixel accurate, and thus suffers similiar limitations
in the visual appearance of the resultant contours.

To start the process, the user traces a contour directly onto the
image. We assume that the user has placed the first and last points
of the contour correctly, and do not allow the system to change their
location (except for snapping, as discussed later). This is because
fixed endpoints improve the results of snake relaxation. The user
can move these points interactively if he or she is not happy with
their initial locations. We then fit piecewise Bézier splines to the
points in the user’s sketched stroke using the technique of Schnei-
der [1990a]. This method uses iterative least squares minimization
to fit a Bézier spline to the set of points. If this spline cannot fit the
data to within a specified tolerance the spline is split in half and the
method proceeds recursively. For an untrained user this approach is
more intuitive than directly specifying the control points of a spline.

Once the contour is initialized we relax the snake to best fit the
edges in the images and to maximize other aesthetic objectives.
Many techniques for optimizing snakes exist [Kass et al. 1987;
Amini et al. 1990]; we chose a simple, greedy technique similar to
Williams and Mubarak [1992]. We iterate over each control point
in the snake, except for the first and last which are frozen. We
calculate an objective function for each location in a 3x3 neighbor-
hood around the current location, and move the control point to the
location that minimizes this function.

The objective function is calculated over those portions of the
contour that are affected by the location of the control point in ques-
tion. For the interior points of each Bézier segment, only the current
Bézier segment is affected. For the end points of each Bézier seg-
ment, two segments are affected. The objective function consists of
three main terms which are weighted and linearly combined:

1. Edge Overlap: This term is the negative of the line inte-
gral of the image gradient along the Bézier segment. It is
calculated discretely using adaptive sampling of the Bézier
curve [de Figueiredo 1995], and is normalized by the length
of the curve. This term pushes the snake towards edges in the
image.

2. Curvature: The curvature term, which discourages convo-
luted splines, is calculated by first taking the average of the
three vectors formed by subtracting adjacent control points in
the cubic Bézier segment. The term is the sum of the squared
differences between these three vectors and their average, nor-
malized by the length from the first control point to the last.

(a) (b) (c)

Figure 1: Creating cartoon images of toys. (a) The original photographs. (b) The user’s tracing. (c) The finished, colored cartoons.

This term is smallest when the three vectors are equivalent,
which is the Bezier representation for a straight line.

3. Corner Sharpness: This term, which is weighted lightly,
discourages corners between connected Bézier segments un-
less the image data strongly encourages it. It is simply the
angle between the tangent lines of the Bézier segments where
they connect.

The image gradient data used in the edge overlap term is calcu-
lated in a pre-processing step. We first clean the video by taking
each frame as an image and de-interlacing it; every other line of
image data is discarded. Next, we apply the SUSAN [Smith and
Brady 1997] structure-preserving noise reduction filter to each im-
age. This filter blurs the image while still preserving strong edges;
though not a necessary step, it tends to improve results from grainy
video. SUSAN operates on greyscale images, so we apply the filter
independently in the three color planes. Finally, we apply a simple
Sobel edge detection filter to the image to calculate the gradient.

In addition to the three main terms we add several penalty terms
in certain rare cases that we wish to discourage. For one, we do not
want points of extremely high curvature to exist along a Bézier seg-
ment, as these can correspond to a cusp or other unsightly features.
So we add a strong penalty when this occurs. Calculating points of
maximum curvature along a cubic Bézier segment in closed form is
not practical. So we again adaptively sample [de Figueiredo 1995]
the curve, and find the maximum angle between the resultant line
segments. Another penalty term is necessary to avoid confusion in
the definition of closed regions for coloring. We do not want Bézier
segments whose endpoints are snapped together (see Section 3.2)

to depart from that endpoint in nearly the same direction. So we
penalize this fairly rare condition.

The relaxation of the snake using this objective function contin-
ues until either a local minimum is reached or the user clicks the
mouse to signal that he or she is satisfied with the contour position.
A cooperative user eliminates the need for termination criterion.

When the relaxation of the snake is finished, we make one more
attempt to minimize its representation. It is common that a section
of the user-drawn curve that could not be represented by a single
Bézier segment before relaxation can now be; this corresponds to
unnecessary wiggles in the user’s hand movements that were re-
solved during relaxation. So, we attempt to join together adjacent
Bézier segments if this can be done within a certain tolerance. This
is done by generating a set of points from the two segments us-
ing adaptive forward differencing [Lien et al. 1987] to avoid over-
weighting any part of the curves. We attempt to fit a single Bézier
segment to this point set using Schneider’s [1990a] least squares
technique. If this can be done within a certain tolerance, we replace
the two segments with one.

The final result is a cartoon contour that closely matches the
user’s desires and the data in the image while maintaining aesthetic
properties such as smoothness. This process can be used to cre-
ate single cartoon images as well as frames in an animation. A
child could, for example, create cartoon images of the toys in his or
her collection. Two examples are shown in Figure 1. The images
showing user input are a log of the user’s tracing directly over the
original image. The second example shows a more extreme case of
poor user input.

3.2 Snapping

When the user draws a curve that is supposed to be attached to an-
other, it is unlikely that the user will be able to exactly position the
curve so that it is attached. This “gap closing” problem is common
in cartooning applications [Gangnet et al. 1994; Fekete et al. 1995],
and is important for two reasons. One, gap closing improves the
look of the final cartoon. Two, it closes off regions so that they may
be colored without leaks.

We solve the problem by simply detecting endpoints placed very
near each other during interactive drawing and snapping them to-
gether. We also keep data structures recording these snaps, so that
we can keep snapped points together during interactive manipula-
tion and tracking through multiple frames. There are four types of
snaps that are handled.

1. Edge Snapping: If the user starts or ends a curve very near
the edge of the image, it is likely that the user wishes the curve
to attach to the edge. This will define two separate regions
bounded by the curve and the edge of the image.

2. Close Snapping: The user may be drawing a closed curve
that ends where it starts. If the last point of the curve is very
close to the first point, we snap them together.

3. Endpoint Snapping: The user may wish a curve to start or
end at one of the endpoints of another curve. We thus check
this possibility for both the first and last points of a newly-
drawn curve. Note that we can snap to the endpoints of an-
other curve as well as the internal corner points that form the
intersection between connected Bézier segments.

4. Curve Snapping: The final case is when the user wishes
the first or last point of a newly-drawn curve to attach to an
arbitrary point along another curve. We must find the clos-
est point on each of the other curves to the endpoint in ques-
tion, and then determine whether the closest of these points
is within a certain tolerance. The solution to this problem in-
volves finding the roots of a fifth order polynomial, and we
use the formulation as presented by Schneider [1990b].

3.3 Coloring

Once the cartoon contours are defined, the user can select a color
for each closed face of the drawing. To do so, we must be able
to define each closed region. What makes the coloring problem
more difficult is that we cannot simply flood-fill each region; if we
did, the resultant cartoons would no longer be entirely vector-based,
making it impossible to transmit in a vector-format like Flash. In-
stead, we must be able to generate vectorial paths that describe each
closed region. We must also solve the point-location problem; given
a point in the image space, it must be possible to determine which
closed region contains this point. This is necessary to allow the user
to interactively select regions for coloring.

The version of this problem where all primitives are line seg-
ments is a common topic in computational geometry [de Berg et al.
1999], and is commonly referred to as a planar subdivision. The
problem with Bézier splines was dealt with in depth in the work
of Gangnet [1989]. However, their focus on exact arithmetic and
efficiency is not necessary in our case. It is also not necessary to
find intersections between splines, as the user is expected to end
individual contours with snaps at their intersections. We thus build
a doubly-connected edge list [de Berg et al. 1999], or DCEL, to aid
us in defining closed regions. This data structure has the advantage
that each counter-clockwise cycle represents one closed region, or
face, while each clockwise cycle represents a hole that is entirely

Figure 2: A doubly-connected edge list example.

contained by an enclosing closed region. We also add the bound-
aries of the image into the data structure, so that the background
can be colored by the user.

3.3.1 Building the DCEL

A visual example of a DCEL is shown in Figure 2. The memory
representation consists of three lists: vertices, directed edges, and
faces. Each edge knows its origin vertex, its previous edge, and its
next edge. Each edge is also aware if its twin, which is the edge
traveling along the same contour but in the opposite direction. The
key invariant to maintain when inserting and deleting edges is that
during a clockwise traversal around a vertex, each incoming edge
is followed by its next edge which is leaving the vertex. Thus, it is
necessary to know the tangent vector of each spline at the vertices to
maintain proper ordering of the edges at each vertex in the DCEL.
We must also take care to split any contours into multiple segments
around curve snaps, as these curve snaps must be vertices in the
DCEL.

To build a DCEL for a frame of the cartoon, we first add all the
vertices and edges while maintaining the properties of the DCEL.
Next, we iterate over the edges and find all closed loops; that is,
we find the closed loops that occur by traversing the next edge field
until the original edge is found again. A face only needs to store a
pointer to one edge in this closed loop. Each edge stores a pointer
to the face on its left. After finding all the faces, we trim away
any edges that are not part of a face. We determine whether each
face is a contour-clockwise or clockwise loop; clockwise faces are
holes, and the others are closed regions which can be colored by the
user. Each counter-clockwise face must store pointers to any holes
it contains, so as to fully define the geometry of a colorable face.

3.3.2 Using the DCEL

The result is a data structure that contains vectorial paths for each
colorable region. We solve the point-location problem by casting a
ray leftwards from the point in question, and use the closest edge
hit that corresponds to an enclosing face. The edge hit does not
correspond to an enclosing face if the face it points to is a hole, or if
the cross product of the cast ray and the tangent vector to the edge at
the intersection point indicates that this edge is part of another hole
of the same face. Intersecting an axis-aligned ray with a Bézier
spline can be done using de Casteljau subdivision [Salomon 1999].
The face pointed to by the found edge is thus the desired region for
coloring. Note that this technique is also used to identify the face
which encloses a specific hole.

Finally, it is necessary to interactively render these filled regions
from their vectorial paths. The rendering of all splines in the sys-

tem is done using simple forward differencing [Salomon 1999]. To
render a region of color, we iterate over the scanlines in the bound-
ing box of the region expanded by one pixel in each direction. The
locations of the intersections of the scanline with the splines com-
posing the region are calculated using de Casteljau subdivision and
then sorted in increasing order. Since we know the starting edge of
the scanline is outside the region, a simple even-odd rule informs
us of which intervals of the scanline need to be colored.

3.4 Interactive Tools

The user must have complete control over the geometry of the car-
toon image. Therefore, several interactive tools are necessary. To
begin with, a move tool allows the user to push and pull at the con-
tours. If the user clicks on an endpoint of a Bézier segment he or
she is allowed to move that endpoint. A more complicated case
arises if the user wishes to edit the internal geometry of the curve.
Again, we do not wish to require the user to understand the concept
of control points for a Bézier spline. Instead, the user must be able
to click directly on a curve, and push and pull on it. The endpoints
should remain in position.

An approach to this problem can be found in the work of Fowler
and Bartels [1993], which provides a general formulation for find-
ing the minimum displacement to spline control points under a set
of constraints. The first constraint, in our case, is that the user-
selected point on the curve passes through its new location. The
second and third constraints are that the endpoints do not move. The
solution is as follows. If t is the parametric value along the Bézier
segment the user is dragging, and the vector ∆p is the change in
position from dragging, then

f̂ = 9(t2(1 − t)4 + t
4(1 − t)2)

∆d =
∆p

f̂
[3t(1 − t)2 3t2(1 − t)]T

yields the 2x2 matrix ∆d whose columns are added to the two
internal control points of the Bézier segment.

Four other tools complete the interface. One tool allows users to
add contours to the cartoon, and another erases contours. The user
can also split two Bézier segments into two, or join two segments
into one. Splitting segments is helpful after tracking over multiple
frames, where perspective changes of the toy can reveal more com-
plicated geometry than can be described by the current number of
segments. Joining segments is helpful for the reverse situation.

4 Drawing a Cartoon Animation

Once the child has created a cartoon of the first frame of the video,
he or she can work with the system to create a multiple frame an-
imation. The user can click to the next frame, and the system will
attempt to automatically track the drawn cartoon to the next frame.
The user can accept this automatically-propagated cartoon frame,
or edit it using the interactive tools. When significant events occur
such as an occlusion, a new object entering the scene, a significant
perspective change, or other such situations, the user must inter-
vene to guide the process. Contours can be added or deleted at any
frame, and the DCEL for every frame is built independently. Color
choices are propagated automatically where possible (as discussed
in Section 4.3).

To track the contours, we first copy the current frame’s cartoon
forward to the next frame along with the snapping information. We
then use a point tracking technique to track the ends of the contours.
Internal points are moved using a transformation space defined by
the endpoints. The snakes are then relaxed to the edges in the new

frame. We track by the endpoints since for our application the ends
of the contours tend to lie at corners in the image that are easy
to track. Also, since the user-specified endpoints are not moved
during snake relaxation, it is necessary to track them as accurately
as possible.

We first describe the point tracking technique used and the par-
ticulars of moving the internal points. We then discuss the relax-
ation of the snakes with an additional term to preserve temporal
coherency.

4.1 Point Tracking

Tracking snakes by tracking their endpoints was first suggested by
Hoch and Litwinowicz [1996]. However, their use of block match-
ing through variance-normalized cross correlation met with little
success in our experiments. Block matching is a process of ex-
haustively searching for a window of image data in frame i + 1
that best matches the window in frame i centered at the point be-
ing tracked. The similarity of image windows is measured using
sum-of-squared-differences. The main problem, besides slow per-
formance, is that this technique does not account for any rotation
of the window; it assumes that the small amount of motion that
can occur between two frames of video can be modeled entirely
by translation. While this is true for most point tracking applica-
tions, it is not true in our case; toys being moved by hand can have
surprising amounts of inter-frame rotation.

We thus use the Shi-Tomasi feature tracker [1994] which tracks
points with an affine motion model. In fact, the authors use their
tracker limited to a translation model, as this leads to better stabil-
ity. The full affine model was only used for measuring dissimilarity
between the current and initial frame. However, their applications
focused on stationary scenes and moving cameras. For our situa-
tion, the full affine model has worked well with little evidence of
instability, while the tracker limited to the translational model did
not perform well. The tracker operates on greyscale images.

The Shi-Tomasi tracker models the displacement δ of a point
between two frames with an affine motion model

δ = Dx + d. (1)

where D is a 2x2 deformation matrix and d is a translation. Then,
if a point x in the first image I moves to a point Ax + d in the
second image J where A = I+D and I is the 2x2 identity matrix,
we can hope that:

J (Ax + d) = I(x) (2)

The Shi-Tomasi tracker attempts to find the 6 motion parameters
in D and d that minimize a least squares measure of dissimilarity
between a window around the point being tracked in image I and
the window of image data in image J define by the motion param-
eters. We thus minimize

ε =

∫ ∫
W

[J (Ax + d) − I(x)]2]dx (3)

where W is the window around the point (we use a 13x13 pixel
window). To track in a pure translational model D is set to zero.
Equation 3 can be linearized into a 6x6 linear system. The deriva-
tion and resultant linear system is too complex to discuss here, but
may found in the references [Shi and Tomasi 1993]. Since a Taylor
series is used to linearize equation 3 the solution is not exact. So,
the tracker proceeds in a Newton-Raphson-style iterative minimiza-
tion to refine the estimate until convergence.

We make two simple modifications to the Shi-Tomasi tracker.
For one, the stability of the tracker is improved by a good initial
estimate of the motion parameters. So, we record the velocity and
acceleration of each point during tracking and use it to predict the

next position. In addition, we track through a two-level image pyra-
mid. That is, we calculate an initial estimate of the motion param-
eters in a sub-sampled version of the image data. This estimate is
then refined in the full resolution image. Image pyramids are com-
mon in tracking applications [Bergen et al. 1992] and are used by a
freely available implementation of the translation-only Shi-Tomasi
tracker [Birchfield 1998]. The sub-sampled images and the image
gradient data needed by the tracker are pre-processed and stored.

Finally, the calculated translation d is added to the location of
the point being tracked in the current frame. When tracking the
endpoints of cartoon contours, the calculated D matrix is discarded
since we only need translation results; D only exists to add degrees
of freedom to the minimization problem. However, we also have the
potential to add other types of features to the cartoon. In the current
system a user can add small, filled circles which can represent eyes,
as evident in Figure 1. These are tracked using the Shi-Tomasi
tracker. Other similar types of features could be added, and the
appearance of these features could be transformed by the results of
the D matrix.

4.2 Handling Internal Control Points

The two extreme endpoints of the snake contour are tracked using
the Shi-Tomasi tracker. However, when possible we also use this
tracker to track the internal endpoints. The internal endpoints are
those control points at the junction between two connected Bézier
splines; these tend to lie at easily trackable locations. However, this
is not always the case. We must decide when it is worth tracking
these points, or when these points should simply follow the move-
ments of their neighbors.

Fortunately the Shi-Tomasi tracker gives us an excellent mea-
sure of when a point will track well. If the minimum eigenvalue
of the 2x2 Z matrix (see [Shi and Tomasi 1993]) is below a certain
threshold, we can safely guess that the point will not track well.
In this case, the point is skipped. We also abandon tracking of the
point if the iterative refinement process becomes unstable, or if the
difference between the image windows in images I and J are too
large.

We propagate those control points that have not been tracked by
a transformation matrix defined by the previous and the next control
points that were tracked successfully. The transformation of the line
connecting these two control points is calculated, composed of the
translation of the center of the line and a rotation and scale about
that center.

4.3 Snake Relaxation After Tracking

Once the cartoon contours have been automatically tracked to the
next frame, we once again allow the snakes to relax against the new
image data. Hopefully, if tracking was successful, these contours
will not have to move much. This is, of course, not always the
case. However, we want to make sure that the shape of the contours
does not change significantly between frames, as this will harm the
appearance of temporal coherency. So we add a shape deformation
penalty to the objective function discussed in Section 3.1.

The shape deformation penalty term calculates a measure of the
change in shape of the contour from its shape in the previous frame.
The snake relaxation will thus discourage significant changes in
shape. The measure of change in shape must be invariant to trans-
lation, rotation, and scale; that is, the measure should not com-
plain about uniform transformations that do not affect our notion
of shape. A common shape signature for such a situation is the
turning function [Arkin et al. 1991; Wolfson 1990]. The turning
function at a point along the curve is simply the angle that the tan-
gent to the curve makes to a certain reference angle, such as the
x-axis. The behavior of this function along the length of the curve

is an excellent characterization of the curve’s shape, and is invari-
ant to uniform changes in translation, scale, or rotation. The shape
deformation penalty is thus the sum of

η =

∫
1

0

(Θ2(t) − Θ1(t))
2

dt (4)

for each Bézier segment in the contour, where Θ2(t) is the turning
function in the current frame and Θ1(t) is the one for the previ-
ous frame. This is calculated discretely using Romberg integra-
tion [Press et al. 1992].

Once the contours have been tracked and the snakes have relaxed
to a mostly stable state, the user can edit the resultant cartoon. This
can involve both moving the endpoints tracked by the Shi-Tomasi
tracker and pushing and pulling on the contour to the state desired
by the user. The user can also delete and add new contours.

A new DCEL for coloring information is built for each new
frame. To propagate coloring choices automatically from the pre-
vious frame, we maintain pointers between corresponding contours
across adjacent frames. To propagate a color for a face, we simply
find an edge of the face with a valid pointer to an edge in the previ-
ous frame, and use the color of the face that that edge bordered.

5 Results

Several frames of several cartoon animations created using Snake-
Toonz are shown in Figure 3 (see color plate). In some of the exam-
ples we have inserted background images behind the cartoon, which
is easy since the animations are entirely vectorial. It is also possi-
ble to use real photographs or live action video as a background
for a merging of cartoon and real imagery. Individual frames of a
cartoon are saved by the system as encapsulated postscript. Five
animations are shown on the accompanying video: a bear anima-
tion of 125 frames, a penguin puppet animation of 116 frames, a
bunny animation of 100 frames, a whale animation of 98 frames,
and a school bus animation of 89 frames.

We have also found it simple to print flipbooks, which provides a
simple physical and portable embodiment of the child’s animation.
This creates an interesting cycle from physical play to a cartoon
animation and back to a tangible trace of the original play.

We have found that it takes an adult an average of about 4 sec-
onds per frame to create a cartoon, at 25 frames per second using
the PAL video standard, which is an order of magnitude faster than
current methods of cartoon animation. This 4 seconds includes a
second of loading pre-processed data and calculating the motion
estimation, and a second for snake relaxation. The user spends an
average of 2 seconds of interactive editing per frame. Most frames
require no editing, while a few require more involved effort. The
longest effort is required when a new view of an object starts to ap-
pear; planning the cartoon changes in response to this can be fun
and educational though time-consuming. The most common user
edit, which takes little time, is correcting drift in tracked points
which tend to appear every 20 to 30 frames.

We feel that the quality of the animations is high, but they are
clearly much simpler than one would find in professional animation
for television or film. However, the savings in time, training, and
effort justify the losses in flexibility and quality for the casual, non-
professional user.

6 Conclusion

6.1 Limitations

Our system works best on clean video with well-defined edges and
few occurrences of occlusion. The approach of SnakeToonz will

never work on arbitrary sequences of video; a complicated crowd
scene is one example of something SnakeToonz could not handle.
Cel animation as a medium is not well-suited to representing fine
detail, and this must be kept in mind when choosing video material.

Another limitation to note is that cartoons created with Snake-
Toonz are restricted to the realities of what can be captured in video.
Traditional animation depends heavily on exaggeration, caricature,
and other unrealistic motions and appearances that are difficult to
record on tape.

6.2 Future Work

We began SnakeToonz with the the assumption that we could sim-
ply plug-in the current state-of-the-art in semi-automatic contour
tracking; it soon became clear that this is not the case. Our results
are fairly simple; they do not include significant 3D rotations, oc-
clusions, or very complicated figures. Also, it is not clear to us that
our system is ready for use by children; we feel that too much hand-
editing of the tracking is required to keep children engaged. To ad-
dress these limitations we need a significantly improved method for
semi-automatic tracking.

However, contour tracking techniques seem to cluster around
two poles. The computer vision community focuses on nearly au-
tomatic techniques without user input. On the other hand, profes-
sional rotoscoping software packages such as Commotion require
significant and repetitive user effort.

Clearly there is a need for new, semi-automatic contour track-
ing techniques. We see many applications of such a tool beyond
SnakeToonz. Most interactive systems for the non-photorealistic
manipulation of images involve a combination of hand-drawn anno-
tations with an analysis of image features. The corresponding task
for video has not been significantly explored due to the added com-
plexity of the time-axis; without tracking, these annotations need to
be made for each frame. Thus, our main plan for future work is the
exploration of user-guided contour tracking in video.

6.3 Epilogue

The goal of SnakeToonz is not to surpass professional animation, or
to trivialize the medium; the creativity of a professional artist will
always be unreachable by a semi-automatic system. Instead, the
contribution of SnakeToonz is to allow those without experience in
cel animation to express themselves in the medium at quality levels
much better than they could have accomplished alone.

We believe that SnakeToonz embodies a new and useful ap-
proach to human-computer artistic dialogues that will help those of
us who are brimming with creative vision but lack the skill and ex-
perience to map from this vision into results. The key is to abstract
the constraints and objectives of a medium, and then to project an
inexperienced user’s input into this space. This approach promises
to be useful in a variety of artistic mediums beyond cartooning.

6.4 Acknowledgements

This research was conducted at Starlab, a private research lab lo-
cated in Brussels, Belgium. But alas, it exists no longer. Thanks
to the many wonderful people who worked there for their help, en-
couragement, and toys. Helpful comments on drafts of this paper
were received from Benedict Brown, Bob Sumner, Joe Marks, and
the anonymous reviewers. Thanks to Elke Van de Velde for photog-
raphy assistance, and to David Salesin and the University of Wash-
ington graphics group for the resources used to put together the final
version of this work.

References

AMINI, A. A., WEYMOUTH, T. E., AND JAIN, R. C. 1990. Us-
ing dynamic programming for solving variational problems in
vision. IEEE Transactions on Pattern Analysis and Machine In-
telligence PAMI-12, 9 (Sept.), 855–867.

ANDERSON, D., FRANKEL, J. L., MARKS, J., AGARWALA, A.,
BEARDSLEY, P., HODGINS, J. K., LEIGH, D., RYALL, K.,
SULLIVAN, E., AND YEDIDIA, J. S. 2000. Tangible interac-
tion + graphical interpretation: A new approach to 3D modeling.
In Proceedings of SIGGRAPH 2000, ACM Press / ACM SIG-
GRAPH, New York, K. Akeley, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 393–402.

ARKIN, E. M., CHEW, L. P., HUTTENLOCHER, D. P., KEDEM,
K., AND MITCHELL, J. S. B. 1991. An efficiently computable
metric for comparing polygonal shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence PAMI-13, 3 (Mar.),
209–216.

BERGEN, J. R., ANANDAN, P., HANNA, K. J., AND HINGORANI,
R. 1992. Hierarchical model–based motion estimation. In Euro-
pean Conference on Computer Vision, Springer-Verlag, vol. 588,
237–252.

BIRCHFIELD, S., 1998. KLT: An implementa-
tion of the Kanade-Lucas-Tomasi feature tracker,
http://vision.stanford.edu/˜birch/klt.

BLAKE, A., AND ISARD, M. 1998. Active Contours. Springer-
Verlag.

DE BERG, M., VAN KREVELD, M., OVERMARS, M., AND
SCHWARZKOPF, O. 1999. Computational Geometry Algorithms
and Applications. Springer-Verlag.

DE FIGUEIREDO, L. H. 1995. Adaptive sampling of parametric
curves. In Graphics Gems V. Academic Press, Boston, 173–178.

FEKETE, J.-D., BIZOUARN, É., COURNARIE, É., GALAS, T.,
AND TAILLEFER, F. 1995. TicTacToon: A paperless system for
professional 2D animation. In Proceedings of SIGGRAPH 1995,
ACM Press / ACM SIGGRAPH, New York, R. Cook, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM,
79–90.

FOWLER, B., AND BARTELS, R. 1993. Constraint-based curve
manipulation. IEEE Computer Graphics and Applications 13, 5
(Sept.), 43–49.

GANGNET, M., HERVE, J.-C., PUDET, T., AND THONG, J.-M. V.
1989. Incremental computation of planar maps. Computer
Graphics (Proceedings of ACM SIGGRAPH 89) 23, 3 (July),
345–354.

GANGNET, M., THONG, J. V., AND FEKETE, J. 1994. Auto-
mated gap closing for freehand drawing. In Technical Sketch,
SIGGRAPH 94, ACM.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. In Proceedings of SIGGRAPH 1998,
ACM Press / ACM SIGGRAPH, New York, M. Cohen, Ed.,
Computer Graphics Proceedings, Annual Conference Series,
ACM, 453–460.

HOCH, M., AND LITWINOWICZ, P. C. 1996. A semi-automatic
system for edge tracking with snakes. The Visual Computer 12,
2, 75–83.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3D freeform design. In Proceedings of
SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, New York,
A. Rockwood, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, 409–416.

KASS, M., WITKIN, A., AND TERZOPOULOS, D. 1987. Snakes:
Active contour models. International Journal of Computer Vi-
sion 1, 4, 321–331.

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOUR-
DEV, L., BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999.
Art-based rendering of fur, grass, and trees. In Proceedings of
SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, New York,
A. Rockwood, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, 433–438.

LIEN, S.-L., SHANTZ, M., AND PRATT, V. 1987. Adaptive for-
ward differencing for rendering curves and surfaces. Computer
Graphics (Proceedings of ACM SIGGRAPH 87) 21, 4 (July),
111–118.

LITWINOWICZ, P. 1997. Processing images and video for an im-
pressionist effect. In Proceedings of SIGGRAPH 1997, ACM
Press / ACM SIGGRAPH, New York, T. Whitted, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM,
407–414.

MALTIN, L. 1980. Of Mice and Magic: A History of American
Animated Cartoons. McGraw-Hill Book Company.

MENET, S., SAINT-MARC, P., AND MEDIONI, G. 1990. B-
snakes: implementation and application to stereo. In Proceed-
ings DARPA Image Understanding Workshop, DARPA. Pitts-
burgh.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent scis-
sors for image composition. In Proceedings of SIGGRAPH 1995,
ACM Press / ACM SIGGRAPH, New York, R. Cook, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM,
191–198.

OSTROMOUKHOV, V. 1999. Digital facial engraving. In Proceed-
ings of SIGGRAPH 1999, ACM Press / ACM SIGGRAPH, New
York, A. Rockwood, Ed., Computer Graphics Proceedings, An-
nual Conference Series, ACM, 417–424.

PAUL, F. 2000. Flashing the web. Technology Review (Mar.).

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C, 2nd. edition.
Cambridge University Press.

SALISBURY, M. P., ANDERSON, S. E., BARZEL, R., AND
SALESIN, D. H. 1994. Interactive pen–and–ink illustration.
In Proceedings of SIGGRAPH 1994, ACM Press / ACM SIG-
GRAPH, New York, A. Glassner, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, 101–108.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based pen-
and-ink illustration. In Proceedings of SIGGRAPH 1997, ACM
Press / ACM SIGGRAPH, New York, T. Whitted, Ed., Com-
puter Graphics Proceedings, Annual Conference Series, ACM,
401–406.

SALOMON, D. 1999. Computer Graphics and Geometric Model-
ing. Springer-Verlag.

SCHNEIDER, P. J. 1990. An algorithm for automatically fitting
digitized curves. In Graphics Gems. Academic Press, Boston,
612–626, 797–807.

SCHNEIDER, P. J. 1990. Solving the nearest-point-on-curve prob-
lem. In Graphics Gems. Academic Press, Boston, 607–611,
787–796.

SHI, J., AND TOMASI, C. 1993. Good features to track. Tech-
nical Report TR93-1399, Cornell University, Computer Science
Department, Nov.

SHI, J., AND TOMASI, C. 1994. Good features to track. In
Proceedings of the Conference on Computer Vision and Pattern
Recognition, IEEE Computer Society Press, IEEE, 593–600.

SMITH, S., AND BRADY, J. 1997. Susan: A new approach to low-
level image-processing. Internation Journal of Computer Vision
23, 1 (May), 45–78.

THOMAS, B. 1976. Walt Disney: An American Original. Fireside
Books (Simon and Schuster).

WHITE, T. 1988. The Animator’s Workbook. Watson-Guptill Pub-
lications.

WILLIAMS, D. J., AND MUBARAK, S. 1992. A fast algorithm
for active contours and curvature estimation. Computer Vision,
Graphics, and Image Processing. Image Understanding 55, 1
(Jan.), 14–26.

WOLFSON, H. J. 1990. On curve matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence 12, 5 (May), 483–
489.

SnakeToonz : A Semi-Automatic Approach to Creating Cel Animation from Video: Aseem Agarwala

Figure 3: Several frames from four examples of animation created with SnakeToonz along with their corresponding video frames.

